Los analistas e investigadores pueden utilizar distribuciones de frecuencia para evaluar los precios y los rendimientos históricos de las inversiones. Los tipos de inversión incluyen acciones, cautiverio, fondos mutuos e índices de mercado amplios. Una distribución de frecuencia muestra el número de ocurrencias para diferentes clases de datos, que pueden ser puntos de datos únicos o rangos de datos. La desviación estándar es una de las formas de examinar la extensión o distribución de una muestra de datos; esto ayuda a predecir las tasas de rendimiento. volatilidad y riesgo.
Formatee la tabla de datos. Utilice una herramienta de hoja de cálculo de software, como Microsoft Excel, para simplificar los cálculos y eliminar errores matemáticos. Etiquete la clase de datos de las columnas, frecuencia, punto medio, el cuadrado de la diferencia entre el punto medio y la media, y el producto de la frecuencia y el cuadrado de la diferencia entre el punto medio y la media. Use símbolos para etiquetar las columnas e incluya una nota explicativa con la tabla.
Complete las primeras tres columnas de la tabla de datos. Por ejemplo, una tabla de precios de acciones podría constar de los siguientes rangos de precios en la columna de clase de datos:$ 10 a $ 12, $ 13 a $ 15 y $ 16 a $ 18 - y 10, 20 y 30 para las frecuencias correspondientes. Los puntos medios son $ 11, $ 14 y $ 17 para las tres clases de datos. El tamaño de la muestra es 60 (10 más 20 más 30).
Calcule la media asumiendo que todas las distribuciones están en el punto medio de los rangos respectivos. La fórmula para la media aritmética de una distribución de frecuencia es la suma del producto del punto medio y la frecuencia de cada rango de datos dividida por el tamaño de la muestra. Continuando con el ejemplo, la media es igual a la suma de las siguientes multiplicaciones de punto medio y frecuencia:$ 11 multiplicado por 10, $ 14 multiplicado por 20 y $ 17 multiplicado por 30, dividido por 60. Por lo tanto, la media es igual a $ 900 ($ 110 más $ 280 más $ 510) dividido por 60, o $ 15.
Llena las otras columnas. Para cada clase de datos, calcular el cuadrado de la diferencia entre el punto medio y la media, y luego multiplique el resultado por la frecuencia. Continuando con el ejemplo, las diferencias entre el punto medio y la media para los tres rangos de datos son - $ 4 ($ 11 menos $ 15), - $ 1 ($ 14 menos $ 15) y $ 2 ($ 17 menos $ 15), y los cuadrados de las diferencias son 16, 1 y 4, respectivamente. Multiplica los resultados por las frecuencias correspondientes para obtener 160 (16 multiplicado por 10), 20 (1 multiplicado por 20) y 120 (4 multiplicado por 30).
Calcula la desviación estándar. Primero, sumar los productos del paso anterior. Segundo, dividir la suma por el tamaño de la muestra menos 1, y finalmente calcule la raíz cuadrada del resultado para obtener la desviación estándar. Para concluir el ejemplo, la desviación estándar es igual a la raíz cuadrada de 300 (160 más 20 más 120) dividida por 59 (60 menos 1), o alrededor de 2,25.
Calcula el valor contable para saber cuánto vale una empresa en papel. Si resta el saldo de un préstamo de automóvil del valor justo de mercado del automóvil, lo que le queda es su equidad en el vehí
El flujo de caja de las actividades de inversión forma parte del estado de flujo de caja de su empresa y se utiliza para mostrar las actividades de inversión y su impacto sobre el flujo de caja. Apren
UN SIMPLE, o plan matemático de incentivos de ahorro para empleados, IRA es una cuenta de jubilación creada por su empleador como alternativa a un plan 401k que aún le permite al empleador ofrecer ben...
Calcular la relación de Sortino La relación de Sortino es una versión modificada de la relación de Sharpe. Los administradores de inversiones lo utilizan para calcular el riesgo de la cartera. El rat...