Desglose de la media geométrica en la inversión
Comprender el rendimiento de la cartera, ya sea para una autogestión, cartera discrecional o una cartera no discrecional, es vital para determinar si la estrategia de la cartera está funcionando o debe modificarse. Existen numerosas formas de medir el desempeño y determinar si la estrategia es exitosa. Una forma es usar la media geométrica.
Significado geometrico, a veces denominada tasa de crecimiento anual compuesta o tasa de rendimiento ponderada en el tiempo, es la tasa de rendimiento promedio de un conjunto de valores calculados utilizando los productos de los términos. ¿Qué significa eso? La media geométrica toma varios valores y los multiplica y los ajusta a la 1 / enésima potencia. Por ejemplo, el cálculo de la media geométrica se puede entender fácilmente con números simples, como 2 y 8. Si multiplica 2 y 8, luego saca la raíz cuadrada (la ½ potencia ya que solo hay 2 números), la respuesta es 4. Sin embargo, cuando hay muchos números, es más difícil de calcular a menos que se utilice una calculadora o un programa de computadora.
La media geométrica es una herramienta importante para calcular el rendimiento de la cartera por muchas razones, pero uno de los más importantes es que tiene en cuenta los efectos de la capitalización.
Rendimiento medio geométrico frente a aritmético
La media aritmética se usa comúnmente en muchas facetas de la vida cotidiana, y es fácil de entender y calcular. La media aritmética se logra sumando todos los valores y dividiendo por el número de valores (n). Por ejemplo, hallar la media aritmética del siguiente conjunto de números:3, 5, 8, -1, y el 10 se logra sumando todos los números y dividiendo por la cantidad de números.
3 + 5 + 8 + -1 + 10 =25/5 =5
Esto se logra fácilmente usando matemáticas simples, pero el rendimiento medio no tiene en cuenta la capitalización. En cambio, si se usa la media geométrica, el promedio tiene en cuenta el impacto de la capitalización, proporcionando un resultado más preciso.
Ejemplo 1:
Un inversor invierte $ 100 y recibe los siguientes rendimientos:
Año 1:3%
Año 2:5%
Año 3:8%
Año 4:-1%
Año 5:10%
Los $ 100 crecieron cada año de la siguiente manera:
Año 1:$ 100 x 1.03 =$ 103.00
Año 2:$ 103 x 1.05 =$ 108.15
Año 3:$ 108.15 x 1.08 =$ 116.80
Año 4:$ 116,80 x 0,99 =$ 115,63
Año 5:$ 115,63 x 1,10 =$ 127,20
La media geométrica es:[(1.03 * 1.05 * 1.08 * .99 * 1.10) ^ (1/5 o .2)] - 1 =4.93%.
La rentabilidad media anual es del 4,93%, un poco menos que el 5% calculado utilizando la media aritmética. Realmente, como regla matemática, la media geométrica siempre será igual o menor que la media aritmética.
En el ejemplo anterior, los rendimientos no mostraron una variación muy alta de un año a otro. Sin embargo, si una cartera o acción muestra un alto grado de variación cada año, la diferencia entre la media aritmética y la geométrica es mucho mayor.
Ejemplo 2:
Un inversor tiene una acción que ha sido volátil con rendimientos que variaron significativamente de un año a otro. Su inversión inicial fue de $ 100 en la acción A, y devolvió lo siguiente:
Año 1:10%
Año 2:150%
Año 3:-30%
Año 4:10%
En este ejemplo, la media aritmética sería 35% [(10 + 150-30 + 10) / 4].
Sin embargo, el verdadero retorno es el siguiente:
Año 1:$ 100 x 1,10 =$ 110,00
Año 2:$ 110 x 2.5 =$ 275.00
Año 3:$ 275 x 0,7 =$ 192,50
Año 4:$ 192,50 x 1,10 =$ 211,75
La media geométrica resultante, o una tasa de crecimiento anual compuesta (CAGR), es 20,6%, mucho más bajo que el 35% calculado usando la media aritmética.
Un problema con el uso de la media aritmética, incluso para estimar el rendimiento medio, es que la media aritmética tiende a exagerar el rendimiento promedio real en una cantidad cada vez mayor cuanto más varían las entradas. En el ejemplo 2 anterior, los rendimientos aumentaron en un 150% en el año 2 y luego disminuyeron en un 30% en el año 3, una diferencia interanual del 180%, que es una variación asombrosamente grande. Sin embargo, si las entradas están muy juntas y no tienen una varianza alta, entonces la media aritmética podría ser una forma rápida de estimar los rendimientos, especialmente si la cartera es relativamente nueva. Pero cuanto más tiempo se mantiene la cartera, cuanto mayor sea la probabilidad de que la media aritmética exagere el rendimiento promedio real.
La línea de fondo
Medir los rendimientos de la cartera es la métrica clave para tomar decisiones de compra / venta. El uso de la herramienta de medición adecuada es fundamental para determinar las métricas correctas de la cartera. La media aritmética es fácil de usar, rápido de calcular, y puede ser útil cuando se trata de encontrar el promedio de muchas cosas en la vida. Sin embargo, es una métrica inapropiada para determinar el rendimiento promedio real de una inversión. La media geométrica es una métrica más difícil de usar y comprender. Sin embargo, es una herramienta mucho más útil para medir el rendimiento de la cartera.
Al revisar los rendimientos anuales de rendimiento proporcionados por una cuenta de corretaje administrada profesionalmente o al calcular el rendimiento de una cuenta autoadministrada, debe tener en cuenta varias consideraciones. Primero, si la variación de retorno es pequeña de un año a otro, entonces, la media aritmética se puede utilizar como una estimación rápida y sucia del rendimiento anual medio real. Segundo, si hay una gran variación cada año, entonces, el promedio aritmético exagerará en gran medida el rendimiento anual promedio real. Tercera, al realizar los cálculos, si hay un retorno negativo, asegúrese de restar la tasa de retorno de 1, lo que resultará en un número menor que 1. Por último, antes de aceptar cualquier dato de rendimiento como exacto y verdadero, ser crítico y comprobar que los datos de rendimiento anual medio presentados se calculan utilizando la media geométrica y no la media aritmética, ya que la media aritmética siempre será igual o superior a la media geométrica.
Finanzas
- Invertir en gas natural:conceptos básicos
- Desglose de la estructura de bonificación del CEO
- Invertir en el sector sanitario
- Invertir en el sector del transporte
- Desglose de la combinación de carteras promedio por edad del inversor
- Definición de media geométrica
- Desviación estándar frente a varianza:¿cuál es la diferencia?
- Error estándar de la media frente a la desviación estándar:la diferencia
- ¿Por qué debería considerar invertir en el mercado de valores?
-
Hábitos de inversión a tener en cuenta para el nuevo año
Como vicepresidente sénior de inversiones en Fundrise, He visto inversores exitosos en todas las formas (financieras) y tamaños (de cuentas bancarias). Hay, sin embargo, una cosa que casi cada E...
-
What the Finance:Rompiendo los términos de inversión
Tantos términos financieros a menudo se utilizan y se utilizan en las conversaciones diarias, pero ¿sabes realmente lo que significan? ¡Nuestra serie What the Finance simplifica los términos financier...