ETFFIN Finance >> Finanzas personales curso >  >> futuros >> Negociación de futuros

Juego de suma cero

¿Qué es un juego de suma cero?

La suma cero es una situación en la teoría de juegos en la que la ganancia de una persona es equivalente a la pérdida de otra, por lo que el cambio neto en riqueza o beneficio es cero. Un juego de suma cero puede tener tan solo dos jugadores o hasta millones de participantes. En los mercados financieros, opciones y futuros son ejemplos de juegos de suma cero, excluyendo los costos de transacción. Por cada persona que gana con un contrato, hay una contraparte que pierde.

1:04

Juego de suma cero

Comprensión del juego de suma cero

Los juegos de suma cero se encuentran en la teoría de juegos, pero son menos comunes que los juegos de suma distinta de cero. El póquer y los juegos de azar son ejemplos populares de juegos de suma cero, ya que la suma de las cantidades ganadas por algunos jugadores es igual a las pérdidas combinadas de los demás. Juegos como ajedrez y tenis, donde hay un ganador y un perdedor, también son juegos de suma cero.

Conclusiones clave

  • Un juego de suma cero es una situación en la que, si una de las partes pierde, la otra parte gana, y el cambio neto en la riqueza es cero.
  • Los juegos de suma cero pueden incluir solo dos jugadores o millones de participantes.
  • En los mercados financieros, los futuros y las opciones se consideran juegos de suma cero porque los contratos representan acuerdos entre dos partes y, si un inversor pierde, luego, la riqueza se transfiere a otro inversor.
  • La mayoría de las transacciones son juegos de suma distinta a cero porque el resultado final puede ser beneficioso para ambas partes.

El juego de hacer coincidir monedas de un centavo se cita a menudo como un ejemplo de un juego de suma cero, según la teoría de juegos. El juego involucra a dos jugadores, A y B, colocando simultáneamente un centavo sobre la mesa. La recompensa depende de si los centavos coinciden o no. Si ambos centavos son cara o cruz, El jugador A gana y se queda con el centavo del jugador B; si no coinciden, luego el jugador B gana y se queda con el centavo del jugador A.

Emparejar centavos es un juego de suma cero porque la ganancia de un jugador es la pérdida del otro. Los pagos para los jugadores A y B se muestran en la siguiente tabla, con el primer número en las celdas (a) a (d) que representan el pago del jugador A, y el segundo número que representa el desempate del jugador B. Como puede verse, la eliminatoria combinada para A y B en las cuatro casillas es cero.

Imagen de Julie Bang © Investopedia 2020

Los juegos de suma cero son lo opuesto a situaciones en las que todos ganan, como un acuerdo comercial que aumenta significativamente el comercio entre dos naciones, o situaciones en las que todos pierden. como la guerra, por ejemplo. En la vida real, sin embargo, las cosas no siempre son tan obvias, y las ganancias y pérdidas suelen ser difíciles de cuantificar.

En el mercado de valores El trading se considera a menudo como un juego de suma cero. Sin embargo, porque las operaciones se realizan sobre la base de expectativas futuras, y los comerciantes tienen diferentes preferencias de riesgo, un intercambio puede ser mutuamente beneficioso. Invertir a más largo plazo es una situación de suma positiva porque los flujos de capital facilitan la producción, y trabajos que luego proporcionan producción, y trabajos que luego generen ahorros, e ingresos que luego proporcionan inversión para continuar el ciclo.

Juego de suma cero frente a teoría de juegos

La teoría de juegos es un estudio teórico complejo en economía. La obra pionera de 1944 "Teoría de los juegos y el comportamiento económico, ”Escrito por el matemático estadounidense nacido en Hungría John von Neumann y coescrito por Oskar Morgenstern, es el texto fundamental. La teoría de juegos es el estudio del proceso de toma de decisiones entre dos o más partes inteligentes y racionales.

La teoría de juegos se puede utilizar en una amplia gama de campos económicos, incluida la economía experimental, que utiliza experimentos en un entorno controlado para probar teorías económicas con más conocimientos del mundo real. Cuando se aplica a la economía, La teoría de juegos utiliza fórmulas y ecuaciones matemáticas para predecir los resultados de una transacción. teniendo en cuenta muchos factores diferentes, incluyendo ganancias, pérdidas, Optimismo, y comportamientos individuales.

En teoria, un juego de suma cero se resuelve mediante tres soluciones, quizás el más notable es el Equilibrio de Nash presentado por John Nash en un artículo de 1951 titulado "Juegos no cooperativos". El equilibrio de Nash establece que dos o más oponentes en el juego, dado el conocimiento de las elecciones de los demás y que no recibirán ningún beneficio al cambiar su elección, por lo tanto, no se desviarán de su elección.

Ejemplos de juegos de suma cero

Cuando se aplica específicamente a la economía, Hay múltiples factores a considerar al entender un juego de suma cero. El juego de suma cero asume una versión de competencia perfecta e información perfecta; Ambos oponentes en el modelo tienen toda la información relevante para tomar una decisión informada. Dando un paso atrás la mayoría de las transacciones o intercambios son intrínsecamente juegos de suma distinta de cero porque cuando dos partes acuerdan comerciar, lo hacen con el entendimiento de que los bienes o servicios que reciben son más valiosos que los bienes o servicios que intercambian por ellos, después de los costos de transacción. Esto se llama suma positiva, y la mayoría de las transacciones se incluyen en esta categoría.

Suma distinta de cero

La mayoría de las otras estrategias populares de teoría de juegos, como el dilema del prisionero, Concurso de Cournot, Juego de ciempiés, y Deadlock son una suma distinta de cero.

El comercio de opciones y futuros es el ejemplo práctico más cercano a un escenario de juego de suma cero porque los contratos son acuerdos entre dos partes, y, si una persona pierde, entonces la otra parte gana. Si bien esta es una explicación muy simplificada de opciones y futuros, generalmente, si el precio de ese producto básico o activo subyacente aumenta (generalmente contra las expectativas del mercado) dentro de un marco de tiempo establecido, un inversor puede cerrar el contrato de futuros con una ganancia. Por lo tanto, si un inversor gana dinero con esa apuesta, habrá una pérdida correspondiente, y el resultado neto es una transferencia de riqueza de un inversor a otro.